On the non-hereditary recursion operator and the constraint on the potential associated with the Giachetti-Johnson equation and its gauge equivalent Yang equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1990 J. Phys. A: Math. Gen. 23721
(http://iopscience.iop.org/0305-4470/23/5/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:00

Please note that terms and conditions apply.

On the non-hereditary recursion operator and the constraint on the potential associated with the Giachetti-Johnson equation and its gauge equivalent Yang equation

Yishen Li and Yunbo Zeng
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

Received 13 March 1989, in final form 19 September 1989

Abstract

The recursion operator associated with the GJ equation is shown not to be hereditary. Restricting the potential to the invariant subspace of the recursion operator leads to a constraint on the potential. Under the constraint two systems obtained from the GJ equation and the related time evolution equation for eigenfunctions are shown to be naturally consistent. Constants of the motion for former system are given and a solution to this system satisfies a certain higher-order stationary equation. Also, similar results are obtained for the Yang equation.

1. Introduction and notation

The central role in studying an integrable equation in $1+1$ dimensions is played by the hereditary recursion operator (see, for example, [1-5]) which satisfies some algebraic geometrical properties mentioned in [5]. In this paper we study some properties of the non-hereditary recursion operator.

Consider the generalised aKns eigenvalue problem

$$
\varphi_{x}=M \varphi \quad \varphi=\binom{\varphi_{1}}{\varphi_{2}} \quad M=\left(\begin{array}{cc}
-\lambda+w & u \tag{1.1}\\
v & \lambda-w
\end{array}\right)
$$

which is proposed by Giachetti and Johnson in [6] and is called the GJ equation for short, and its gauge equivalent Yang equation [7]

$$
\psi_{x}=\tilde{M} \psi \quad \psi=\binom{\psi_{1}}{\psi_{2}} \quad \tilde{M}=\left(\begin{array}{cc}
s & \xi+q+r \tag{1.2}\\
-\xi-q+r & -s
\end{array}\right)
$$

where λ and ξ are eigenparameters, and u, v, w, s, q, r are sufficiently smooth functions of x and t. Equation (1.1) is the special case of the spectral problem considered in [8]. It was pointed out in [8,9] that the general form of the nonlinear evolution equations associated with (1.1) consists of a term expressed in recursion form by a recursion operator and an additional arbitrary term. By suitably choosing the arbitrary function, an infinite set of heirarchies of nonlinear evolution equations associated with (1.1) and (1.2), for which the two terms mentioned above can be rewritten in one term
with another recursion operator, are given in [9], respectively, as follows:

$$
\begin{array}{ll}
p_{t}=\theta L^{* n} f_{0} & \\
p_{t}=\theta_{l} L^{* n+1} f_{0} & l=1,2, \ldots \\
\bar{p}_{1}=\bar{\theta} \bar{L}^{* n} \bar{f}_{0} & \\
\bar{p}_{t}=\bar{\theta}_{l} \bar{L}^{* n+1} \bar{f}_{0} & l=1,2, \ldots \tag{1.4b}
\end{array}
$$

where
$p=\left(\begin{array}{c}u \\ v \\ w\end{array}\right) \quad \bar{p}=\left(\begin{array}{c}q \\ r \\ s\end{array}\right) \quad f_{0}=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right) \quad \bar{f}_{0}=\left(\begin{array}{c}2 \mathrm{i} \\ 0 \\ 0\end{array}\right)$
$\theta=\left(\begin{array}{ccc}0 & D-2 w & 0 \\ D+2 w & 0 & 0 \\ 0 & 0 & -\frac{1}{2} D\end{array}\right) \quad \bar{\theta}=\left(\begin{array}{ccc}\frac{1}{2} D & 0 & 0 \\ 0 & \frac{1}{2} D & q \\ 0 & -q & \frac{1}{2} D\end{array}\right) \quad D=\frac{\mathrm{d}}{\mathrm{d} x}$
$\theta_{l}=\left(\begin{array}{ccc}0 & -2 & l u \\ 2 & 0 & -l v \\ -l u & l v & l D\end{array}\right) \quad \bar{\theta}_{l}=\left(\begin{array}{ccc}-D & -l s & l r \\ l s & 0 & -\mathrm{i} \\ -l r & \mathrm{i} & 0\end{array}\right) \quad l=1,2, \ldots$
the operators L^{*} and \bar{L}^{*} are adjoint operators of L and \bar{L}, respectively. L^{*} and \bar{L}^{*} are given by

$$
\begin{align*}
& L^{*}=\left(\begin{array}{ccc}
\frac{1}{2} D+w & 0 & -\frac{1}{2} v \\
0 & -\frac{1}{2} D+w & -\frac{1}{2} u \\
D^{-1} u(D+2 w) & D^{-1} v(D-2 w) & 0
\end{array}\right) \tag{1.6a}\\
& L^{*}=\left(\begin{array}{ccc}
0 & D^{-1}(2 s q-r D) & D^{-1}(-2 q r-s D) \\
-r & -q & \frac{1}{2} D \\
-s & -\frac{1}{2} D & -q
\end{array}\right) \tag{1.6b}\\
& D^{-1} D=D D^{-}=1 .
\end{align*}
$$

It is known $[6,8]$ that (1.1) can be converted to the canonical zs-AKNS spectral problem by the gauge transformation $q=u \mathrm{e}^{-2 D^{-1} w}, r=v \mathrm{e}^{2 D^{-1} w}$, which transforms the triple of functions (u, v, w) to the pair (q, r) in the zs-AKNS case. It is clear that this gauge transformation admits the uncertainty of the general nonlinear evolution equations for (u, v, w) when starting from the evolution equations for (q, r). Thus, after specifying the uncertainty, it is significant to study the specific equations (1.3) and (1.4) in themselves. Indeed, we find that the recursion operator L for (1.3) possesses some properties which are quite different from those for the hereditary recursion operator associated with the akns hierarchy [10]. The main reason for this difference is that L is not hereditary. By using the results given in [2,11], we shall show that L is not hereditary.

It is significant to consider a constraint on the potential of an eigenvalue problem and associated integrable nonlinear evolution equations (see, for example, [12, 14] and the references within [13]). If no boundary condition for the potential is required, we proposed in [13] a straightforward way of obtaining the constraint on the potential by restricting a hierarchy of integrable evolution equations to the invariant subspace of their recursion operator. Under this constraint condition, two systems obtained
from the Lax pair can be shown to be naturally consistent. Usually, the invariant subspace of a hereditary recursion operator consists of the eigenvectors of the recursion operator. However, in section 3, for the non-hereditary recursion operator L, we have to restrict p to a subspace spanned by eigenvectors of L^{*} and one more vector $\Psi_{0}=(0,0,2)^{\mathrm{T}}$ in order to obtain an invariant subspace of L^{*} and a constraint on p. Under this constraint on p, two systems obtained from the GJ equation (1.1) and time evolution equation of φ related to (1.3) are shown to be naturally consistent. Also, the constants of the motion for the former system are given and the solution of this system satisfies a certain higher-order stationary equation of (1.3). Using the gauge transformation, it is easy to obtain the constraint on q and r in the aKns case from one on u, v and w. However, it seems that this gauge transformation does not provide a direct way of obtaining the specific constraint on u, v and w from one on q and r. Similar results for the Yang equation are also obtained.

2. Non-hereditary property of L and \bar{L}

It was shown in [9] that ($1.3 b$) can be written as a Hamiltonian systems with θ_{l} as the associated symplectic operator, namely $p_{t}=\theta_{l} L^{* n+1} f_{0}=\theta_{l} \delta I_{n+1} / \delta p$. But it is easy to verify that $\theta_{l} L^{*} \neq L \theta_{l}$. This means [11] that L is not hereditary. (Otherwise, it would be valid that $\theta_{l} L^{*}=L \theta_{l}$.) This conclusion is consistent with the fact that for (1.3a), $L^{* n} f_{0}=\delta I_{n} / \delta p, \theta L^{*}=L \theta$, but θ is not a symplectic operator.

Also, we can show that L is not hereditary by using other property of hereditary. From (1.6a) we have

$$
L=\left(\begin{array}{ccc}
-\frac{1}{2} D+w & 0 & (D-2 w) u D^{-1} \\
0 & \frac{1}{2} D+w & (D+2 w) v D^{-1} \\
-\frac{1}{2} v & -\frac{1}{2} u & 0
\end{array}\right)
$$

Taking

$$
\kappa_{0}=\left(\begin{array}{c}
2 u \\
-2 v \\
0
\end{array}\right)
$$

it is easy to check that

$$
\begin{aligned}
& L^{\prime}\left[k_{0}\right]=\left(\begin{array}{ccc}
0 & 0 & (D-2 w)(2 u) D^{-1} \\
0 & 0 & (D+2 w)(-2 v) D^{-1} \\
v & -u & 0
\end{array}\right) \\
& k_{0}^{\prime} L=\left(\begin{array}{ccc}
-D+2 w & 0 & 2(D+2 w) u D^{-1} \\
0 & -D-2 w & -2(D+2 w) v D^{-1} \\
0 & 0 & 0
\end{array}\right) \\
& L k_{0}^{\prime}=\left(\begin{array}{ccc}
-D+2 w & 0 & 0 \\
0 & -D-2 w & 0 \\
-v & u & 0
\end{array}\right) .
\end{aligned}
$$

Thus we have

$$
L^{\prime}\left[k_{0}\right]=k_{0}^{\prime} L-L k_{0}^{\prime}
$$

which means that L is a strong symmetry for k_{0} (see [2]).

Setting

$$
k_{1}=L k_{0}=\left(\begin{array}{c}
-u_{x}+2 u w \\
-v_{x}-2 v w \\
0
\end{array}\right)
$$

then a straightforward calculation gives

$$
\begin{aligned}
& L^{\prime}\left[k_{1}\right]=\left(\begin{array}{ccc}
& 0 & (D-2 w)\left(-u_{x}+2 u w\right) D^{-1} \\
0 & 0 & (D+2 w)\left(-v_{x}-2 v w\right) D^{-1} \\
\frac{1}{2} v_{x}+v w & \frac{1}{2} u_{x}-u w & 0
\end{array}\right) \\
& k_{1}^{\prime} L=\left(\begin{array}{ccc}
\frac{1}{2}(-D+2 w)^{2}-u v & -u^{2} & -(D-2 w)^{2} u D^{-1} \\
v^{2} & -\frac{1}{2}(D+2 w)^{2}+u v & -(D+2 w)^{2} v D^{-1} \\
0 & 0 & 0
\end{array}\right) \\
& L k_{1}^{\prime}=\left(\begin{array}{ccc}
\frac{1}{2}(-D+2 w)^{2} & 0 & \left(-\frac{1}{2} D+w\right)(2 u) \\
0 & -\frac{1}{2}(D+2 w)^{2} & \left(\frac{1}{2} D+w\right)(-2 v) \\
-\frac{1}{2} v(-D+2 w) & \frac{1}{2} u(D+2 w) & 0
\end{array}\right)
\end{aligned}
$$

It follows from the above formulae that

$$
L^{\prime}\left[k_{1}\right]-k_{1}^{\prime} L+L k_{1}^{\prime} \neq 0
$$

which means that L is not a strong symmetry for k_{1}. Since L is a strong symmetry for k_{0}, if L is hereditary, it would follow that L is a strong symmetry for $k_{1}=L k_{0}$. So L is not hereditary [2].

The spectral problem (1.2) can be converted to (1.1) by a gauge transformation given in [9]. It is shown in [9] that

$$
\bar{L}=T L T^{-1} \quad T=\left(\begin{array}{ccc}
0 & 0 & -\mathrm{i} \\
\frac{1}{2} \mathrm{i} & -\frac{1}{2} \mathrm{i} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

which means that \bar{L} can never be hereditary [2].
Finally, we want to point out that L^{*} and \bar{L}^{*} satisfy the following isospectal eigenvalue equations:

$$
\begin{align*}
L^{*} G_{\lambda} & =\lambda G_{\lambda} \tag{2.1}\\
\bar{L}^{*} G_{\xi} & =\xi G_{\xi} \tag{2.2}
\end{align*}
$$

where G_{λ} and G_{ξ} denote the gradients of λ and ξ, respectively. Assume that u, v, w, q, r, s belong to Schwartz space. Using the following formula [15] that if

$$
\varphi_{x}=M \varphi \quad \varphi=\binom{\varphi_{1}}{\varphi_{2}} \quad M=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

then

$$
\int_{-\infty}^{\infty}\left(-\dot{c} \varphi_{1}^{2}+2 \dot{a} \varphi_{1} \varphi_{2}+\dot{b} \varphi_{2}^{2}\right) \mathrm{d} x=0
$$

where the dot denotes the Frechet derivative, it is easy to find the gradients G_{λ} and G_{ξ} from (1.1) and (1.2), respectively. We have

$$
\begin{aligned}
& G_{\lambda}=\left(\frac{\delta \lambda}{\delta u}, \frac{\delta \lambda}{\delta v}, \frac{\delta \lambda}{\delta w}\right)^{\top}=\left(\varphi_{2}^{2},-\varphi_{1}^{2}, 2 \varphi_{1} \varphi_{2}\right)^{\mathrm{T}} \\
& G_{\xi}=\left(\frac{\delta \xi}{\delta q}, \frac{\delta \xi}{\delta r}, \frac{\delta \xi}{\delta s}\right)^{\mathrm{T}}=\left(-\psi_{1}^{2}-\psi_{2}^{2}, \psi_{1}^{2}-\psi_{2}^{2},-2 \psi_{1} \psi_{2}\right)^{\mathrm{T}} .
\end{aligned}
$$

From (1.1), one gets

$$
\begin{aligned}
& \left(\varphi_{1}^{2}\right)_{x}=2(-\lambda+w) \varphi_{1}^{2}+2 u \varphi_{1} \varphi_{2} \quad\left(\varphi_{2}^{2}\right)_{x}=2 v \varphi_{1} \varphi_{2}-2(-\lambda+w) \varphi_{2}^{2} \\
& \left(\varphi_{1} \varphi_{2}\right)_{x}=u \varphi_{2}^{2}+v \varphi_{1}^{2}
\end{aligned}
$$

which can be rewritten as

$$
\begin{align*}
& \lambda \varphi_{2}^{2}=\frac{1}{2}\left(\varphi_{2}^{2}\right)_{x}+w \varphi_{2}^{2}-v \varphi_{1} \varphi_{2} \tag{2.3}\\
& -\lambda \varphi_{1}^{2}=
\end{aligned}=\frac{1}{2}\left(\varphi_{1}^{2}\right)_{x}-w \varphi_{1}^{2}-u \varphi_{1} \varphi_{2}, ~ \begin{aligned}
2 \lambda \varphi_{1} \varphi_{2} & =D^{-1}\left(2 \lambda u \varphi_{2}^{2}+2 \lambda v \varphi_{1}^{2}\right) \tag{2.4}\\
& =D^{-1}\left(u\left(\varphi_{2}^{2}\right)_{x}-2 u v \varphi_{1} \varphi_{2}+w u \varphi_{2}^{2}-v\left(\varphi_{1}^{2}\right)_{x}+2 w v \varphi_{1}^{2}+2 u v \varphi_{1} \varphi_{2}\right) \\
& =D^{-1}\left[u(D+2 w) \varphi_{2}^{2}-v(D-2 w) \varphi_{1}^{2}\right] .
\end{align*}
$$

Equations (2.3), (2.4) and (2.5) admit the equation (2.1). Similarly, (2.2) can be deduced from (1.2).

Remark. We have just shown that L is not a strong symmetry for $p_{1}=k_{1}$, which is the first equation in the hierarchy (1.3a). Thus the formula (2.1) does not contradict the conclusion that L is not hereditary (see [11]).

3. The natural constraint on \boldsymbol{p} and \bar{p}

Besides (1.1), if φ satisfies

$$
\varphi_{t}=N \varphi \quad N=\left(\begin{array}{cc}
A & B \tag{3.1}\\
C & -A
\end{array}\right)
$$

where

$$
\begin{array}{ll}
A=\sum_{k=0}^{n-1} a_{k} \lambda^{n-k} & B=\sum_{k=1}^{n} b_{k} \lambda^{n-k} \\
\left(\begin{array}{c}
c_{k} \\
b_{k} \\
2 a_{k}
\end{array}\right)=L^{* k} f_{0} & k=0, \ldots, n \tag{3.3}
\end{array}
$$

then the solvability condition of (1.1) and (3.1) is

$$
\begin{equation*}
\varphi_{x t}-\varphi_{I x}=M_{1}-N_{x}+M N-N M=0 . \tag{3.4}
\end{equation*}
$$

Using (3.2) and (3.3), we have [9]

$$
M_{t}-N_{x}+M N-N M=\left(\begin{array}{cc}
w_{t}+a_{n x} & u_{t}-\left(b_{n x}-2 w b_{n}\right) \tag{3.5}\\
v_{t}-\left(c_{n x}+2 w c_{n}\right) & -w_{t}-a_{n x}
\end{array}\right)
$$

which, together with (3.4), gives (1.3a). Here (1.3a) is deduced from (1.1) and (3.1) without requiring any boundary condition for p_{x} and we define the integral constant of D^{-1} appearing in L^{*} to be zero. Using $I_{0}=\int_{x_{0}}^{x} \mathrm{~d} y$ instead of D^{-1}, we define

$$
L_{0}=\left(\begin{array}{ccc}
\frac{1}{2} D+w & 0 & -\frac{1}{2} v \\
0 & -\frac{1}{2} D+w & -\frac{1}{2} u \\
I_{0} u(D+2 w) & I_{0} v(D-2 w) & 0
\end{array}\right)
$$

where x_{0} is a fixed arbitrary constant. It is easy to see from (2.1) that if φ satisfies (1.1), then

$$
\begin{equation*}
L_{0} \Psi=\lambda \Psi+e \Psi_{0} \tag{3.6}
\end{equation*}
$$

where

$$
\Psi=\left(\begin{array}{c}
\varphi_{2}^{2} \\
-\varphi_{1}^{2} \\
2 \varphi_{1} \varphi_{2}
\end{array}\right) \quad \Psi_{0}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right) \quad e=-\left.\lambda \varphi_{1} \varphi_{2}\right|_{x=x_{0}}
$$

We now consider following system instead of (1.1):

$$
\begin{array}{ll}
\Phi_{j x}=M_{j} \Phi_{j} & \Phi_{j}=\binom{\varphi_{1 j}}{\varphi_{2 j}} \tag{3.7}\\
M_{j}=\left(\begin{array}{cc}
-\lambda_{j}+w & u \\
v & \lambda_{j}-w
\end{array}\right) & j=1, \ldots, N
\end{array}
$$

where $\lambda_{k} \neq \lambda_{1}$, when $k \neq l$. We define

$$
\begin{aligned}
& \Phi=\left(\varphi_{11}, \ldots, \varphi_{1 N} ; \varphi_{21}, \ldots, \varphi_{2 N}\right)^{\mathrm{T}} \\
& \Psi_{j}=\left(\begin{array}{c}
\varphi_{2 j}^{2} \\
-\varphi_{1 j}^{2} \\
2 \varphi_{1 j} \varphi_{2 j}
\end{array}\right) \quad j=1, \ldots, N .
\end{aligned}
$$

If Φ solves (3.7), one gets from (3.6)

$$
\begin{equation*}
L_{0} \Psi_{j}=\lambda_{j} \Psi_{j}+e_{j} \Psi_{0} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{j}=-\left.\lambda_{j} \varphi_{1 j} \varphi_{2 j}\right|_{x=x_{0}} . \tag{3.9}
\end{equation*}
$$

Note that

$$
L_{0} \Psi_{0}=f_{1}=\left(\begin{array}{c}
-v \tag{3.10a}\\
-u \\
0
\end{array}\right) .
$$

We can get an invariant subspace H of L_{0} spanned by $\left\{\Psi_{1}, \ldots, \Psi_{N}, \Psi_{0}\right\}$ by demanding

$$
\left(\begin{array}{c}
-v \\
-u \\
0
\end{array}\right)=\sum_{j=0}^{N} \alpha_{j} \Psi_{j} .
$$

Without loss of generality, we take $\alpha_{j}=1$, i.e.

$$
f_{1}=\left(\begin{array}{c}
-v \tag{3.10b}\\
-u \\
0
\end{array}\right)=\sum_{j=1}^{N} \Psi_{j}+\Psi_{0}
$$

which is equivalent to

$$
\begin{align*}
& v=-\sum_{j} \varphi_{2 j}^{2} \tag{3.11a}\\
& u=\sum_{j} \varphi_{1 j}^{2} \tag{3.11b}\\
& \sum_{j} \varphi_{1 j} \varphi_{2 j}=-1 \tag{3.11c}
\end{align*}
$$

where we use Σ_{j} instead of $\Sigma_{j=1}^{N}$ for brevity throughout the paper. Under the constraint condition (3.11a) and (3.11b), it follows from (3.7) that

$$
\left(\sum_{j} \varphi_{1 j} \varphi_{2 j}\right)_{x}=0
$$

which is consistent with (3.11c). Finally we have from (3.7) that

$$
\left(\begin{array}{c}
v \tag{3.12}\\
u \\
w
\end{array}\right)=f(\Phi)=\left(\begin{array}{c}
-\Sigma_{j} \varphi_{2 j}^{2} \\
\Sigma_{j} \varphi_{1 j}^{2} \\
-\Sigma_{j} \lambda_{j} \varphi_{1 j} \varphi_{2 j}-\Sigma_{j} \varphi_{1 j x} \varphi_{2 j}+\Sigma_{j} \varphi_{1 j}^{2} \Sigma_{k} \varphi_{2 k}^{2}
\end{array}\right)
$$

Imposing the constraint condition (3.11c) and (3.12), (3.7) and (3.1) become

$$
\begin{array}{lll}
\Phi_{j x}=\bar{M}_{j} \Phi_{j} & \bar{M}_{j}=\left.M_{j}\right|_{A} & j=1, \ldots, N \\
\Phi_{j i}=\bar{N}_{j} \Phi_{j} & \bar{N}_{j}=\left.N\right|_{\lambda=\lambda_{i}, A} & j=1, \ldots, N \tag{3.14}
\end{array}
$$

where subscript A means to substitute (3.11c) and (3.12) into the expression. We will show that (3.13) and (3.14) are naturally consistent, namely that the set of the solutions to (3.13) is left invariant under the flow (3.14). Indeed, the fact that the constraint on p (3.12) ensures that H be an invariant subspace of L_{0} allows us to show the consistency of (3.13) and (3.14).

Let Φ satisfy (3.14); set
$F_{j}=\Phi_{j x}-\bar{M}_{j} \Phi_{j} \quad F_{j}=\binom{F_{1 j}}{F_{2 j}} \quad F=\left(F_{11}, \ldots, F_{1 N} ; F_{21}, \ldots, F_{2 N}\right)$.
Following the procedure proposed in $[13,15]$, we will show that if $F(x, 0)=0$, then $F(x, t)=0$.

Lemma. F defined by (3.15) satisfies

$$
F_{j t}=\bar{N}_{j} F_{j}-\left.\left(\begin{array}{cc}
w_{t}+a_{n x} & u_{t}-\left(b_{n x}-2 w b_{n}\right) \tag{3.16}\\
v_{t}-\left(c_{n x}+2 w c_{n}\right) & -w_{t}-a_{n x}
\end{array}\right) \Phi_{j}\right|_{A} \quad j=1, \ldots, N .
$$

Proof.

$$
\begin{aligned}
F_{j t} & =\Phi_{j x t}-\bar{M}_{j t} \Phi_{j}-\bar{M}_{j} \Phi_{j t} \\
& =\left.\left(N_{j x} \Phi_{j}+N_{j} M_{j} \Phi_{j}+N_{j} F_{j}-M_{j t} \Phi_{j}-M_{j} N_{j} \Phi_{j}\right)\right|_{A} \\
& =\bar{N}_{j} F_{j}-\left.\left(M_{j t}-N_{j x}+M_{j} N_{j}-N_{j} M_{j}\right) \Phi_{j}\right|_{A}
\end{aligned}
$$

which completes the proof by using (3.5).
Theorem 3.1. Suppose that $\Phi(x, t)$ solves (3.14) and $\Phi(x, 0)$ solves (3.13), then $\Phi(x, t)$ satisfies (3.13), and (3.12) is a solution to (1.3a).

Proof. Using (3.15), a straightforward calculation gives

$$
\begin{equation*}
L_{0} \Psi_{j}=\lambda_{j} \Psi_{j}+e_{j} \Psi_{0}+G_{j} \quad j=1, \ldots, N \tag{3.17a}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{j}=-\left.\lambda_{j} \varphi_{1 j} \varphi_{2 j}\right|_{x=x_{0}} \\
& G_{j}=\left(\begin{array}{c}
G_{1 j} \\
G_{2 j} \\
G_{3 j}
\end{array}\right)=\left(\begin{array}{c}
\varphi_{2 j} F_{2 j} \\
\varphi_{1,} F_{1 j} \\
2 \lambda_{j} I_{0}\left(F_{1 j} \varphi_{2 j}+F_{2 j} \varphi_{1 j}\right)+2 I_{0}\left(u \varphi_{2 j} F_{2 j}-v \varphi_{1 j} F_{1 j}\right)
\end{array}\right) . \tag{3.17b}
\end{align*}
$$

From (3.17) and (3.10), it can be derived by induction that

$$
\begin{align*}
& \left.L_{0} f_{1}\right|_{A}=\sum_{j}\left(\lambda_{j}+1\right) \Psi_{j}+\alpha_{2} \Psi_{0}+G^{(1)} \tag{3.18}\\
& \left.L_{0}^{k} f_{1}\right|_{A}=\sum_{j} \Psi_{j} \sum_{m=0}^{k} \alpha_{m} \lambda_{j}^{k-m}+\alpha_{k+1} \Psi_{0}+G^{(k)} \tag{3.19}
\end{align*}
$$

where

$$
\begin{array}{ll}
\alpha_{0}=1 & \alpha_{m}=\sum_{l=0}^{m-1} \alpha_{l} \delta_{m-1-l} \\
\delta_{0}=1 & \delta_{l}=\sum_{j} \lambda_{j}^{l-1} e_{i}=-\left.\sum_{j} \lambda_{j}^{l} \varphi_{1 j} \varphi_{2 j}\right|_{x=x_{0}} \\
G^{(1)}=\left.\sum_{j} G_{j}\right|_{A} & G^{(k)}=\sum_{j} G_{j} \sum_{m=0}^{k-1} \alpha_{m} \lambda_{j}^{k-1-m}+\left.L_{0} G^{(k-1)}\right|_{A} . \tag{3.21}
\end{array}
$$

It is easy to observe that each monomial of each component of $G^{(k)}$ contains either one component of $F, F_{x}, F_{x x}, \ldots$ as a factor or an integration like $I_{0} \ldots I_{0} g$, the integrand of which, $g(x)$, has one component of F, F_{x}, \ldots as a factor. In what follows, for simplicity, we denote all these kinds of function vector by the one symbol $\tilde{G}=$ $\left(\tilde{G}_{1}, \tilde{G}_{2}, \tilde{G}_{3}\right)^{\mathrm{\top}}$ without regard for their differences.

Using the following identity repeatedly:

$$
L^{*}\left(\begin{array}{c}
c_{k} \tag{3.22}\\
b_{k} \\
2 a_{k}
\end{array}\right)=L_{0}\left(\begin{array}{c}
c_{k} \\
b_{k} \\
2 a_{k}
\end{array}\right)+\beta_{k+1} \Psi_{0} \quad \beta_{k}=\left.a_{k}\right|_{x=x_{0}}
$$

we get from (3.3) and (3.19)

$$
\begin{align*}
\left.\left(\begin{array}{c}
c_{k+1} \\
b_{k+1} \\
2 a_{k+1}
\end{array}\right)\right|_{A} & =\left.L^{* k} f_{1}\right|_{A}=\left.\sum_{m=0}^{k} \beta_{k-m} L_{0}^{m} f_{1}\right|_{A}+\beta_{k+1} \Psi_{0} \\
& =\sum_{m=0}^{k} \beta_{k-m} \sum_{j} \Psi_{j} \sum_{i=0}^{m} \alpha_{i} \lambda_{j}^{m-i}+\sum_{m=0}^{k+1} \alpha_{m} \beta_{k+1-m} \Psi_{0}+\tilde{G} \tag{3.23}\\
& =\sum_{j} \Psi_{J} \sum_{m=0}^{k} h_{m} \lambda_{j}^{k-m}+h_{k+1} \Psi_{0}+\tilde{G}
\end{align*}
$$

where

$$
\begin{equation*}
h_{0}=1 \quad h_{m}=\left.\sum_{i=0}^{m} \alpha_{i} \beta_{m-i}\right|_{A}=\left.\sum_{i=0}^{m} \alpha_{i} a_{m-i}\right|_{A, x=x_{0}} . \tag{3.24}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l}\left(\lambda_{m}^{n-k} \lambda_{j}^{k-1-1}-\lambda_{j}^{n-k} \lambda_{m}^{k-1-1}\right)=0 \tag{3.25}
\end{equation*}
$$

one gets from (3.12), (3.14) and (3.23) that

$$
\begin{align*}
\left.v_{l}\right|_{A}= & -\left.2 \sum_{m} \varphi_{2 m} \varphi_{2 m l}\right|_{A} \\
= & -\left.2 \sum_{m} \varphi_{2 m}\left(\sum_{k=1}^{n} a_{k} \lambda_{m}^{n-k} \varphi_{1 m}-\sum_{k=0}^{n-1} a_{k} \lambda_{m}^{n-k} \varphi_{2 m}\right)\right|_{A} \\
= & -2 \sum_{m, j} \varphi_{1 m} \varphi_{2 m} \varphi_{2 j}^{2} \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l}\left(\lambda_{m}^{n-k} \lambda_{j}^{k-l-1}-\lambda_{m}^{k-l-1} \lambda_{j}^{n-k}\right) \\
& +2 \sum_{m} \varphi_{2 m}^{2} \sum_{k=0}^{n-1} h_{k} \lambda_{m}^{n-k}-2 \sum_{m, j} \varphi_{2 m}^{2} \varphi_{1 j} \varphi_{2 j} \sum_{l=0}^{n-1} h_{l} \lambda_{j}^{n-1-1}+\tilde{G}_{1} \tag{3.26}\\
= & 2 \sum_{m} \varphi_{2 m}^{2} \sum_{k=0}^{n-1} h_{k} \lambda_{m}^{n-k}-2 \sum_{m, j} \varphi_{2 m}^{2} \varphi_{1 j} \varphi_{2 j} \sum_{l=0}^{n-1} h_{l} \lambda_{j}^{n-l-1}+\tilde{G}_{1} .
\end{align*}
$$

By using (3.15) and (3.23), it is found that

$$
\begin{aligned}
\left.\left(c_{n x}+2 w c_{n}\right)\right|_{A} & =\sum_{j} 2 \varphi_{2 j}\left(\varphi_{2 j x}+w \varphi_{2 j}\right) \sum_{l=0}^{n-1} h_{l} \lambda_{j}^{n-l-1}+\tilde{G}_{1} \\
& =2 \sum_{j} \varphi_{2 j}^{2} \sum_{l=0}^{n-1} h_{k} \lambda_{j}^{n-1}-2 \sum_{m, j} \varphi_{2 m}^{2} \varphi_{1 j} \varphi_{2 j} \sum_{l=0}^{n-1} h_{i} \lambda_{j}^{n-l-1}+\tilde{G}_{1}
\end{aligned}
$$

which, together with (3.26), leads to

$$
\begin{equation*}
\left.\left[v_{t}-\left(c_{n x}+2 w c_{n}\right)\right]\right|_{A}=\tilde{G}_{1} . \tag{3.27}
\end{equation*}
$$

In similar manner, we have

$$
\begin{equation*}
\left.\left[u_{1}-\left(b_{n x}-2 w b_{n}\right)\right]\right|_{A}=\tilde{G}_{2} \tag{3.28}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l}\left(\lambda_{j}^{n-k} \lambda_{m}^{k-1}-\lambda_{m}^{n-k} \lambda_{j}^{k-1}\right)=\sum_{l=0}^{n-1} \dot{h}_{l}\left(\lambda_{m}^{n-1}-\lambda_{j}^{n-l}\right) \\
& \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l}\left(\lambda_{j}^{n-k+1} \lambda_{m}^{k-1-1}-\lambda_{m}^{n-k+1} \lambda_{j}^{k-l-1}\right)=\sum_{l=0}^{n} h_{l}\left(\lambda_{j}^{n-l}-\lambda_{m}^{n-l}\right) .
\end{aligned}
$$

We find from (3.12), (3.14), (3.15), (3.23) and (3.25) that

$$
\begin{aligned}
\left.w_{l}\right|_{A}= & \sum_{j, m} \varphi_{2 j}^{2} \varphi_{1 m} \varphi_{1 m x} \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{1} \lambda_{j}^{n-k} \lambda_{m}^{k-l-1} \\
& -\sum_{j, m} \varphi_{1 j}^{2} \varphi_{2 m}^{2} \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l}\left(\lambda_{j}^{n-k+1} \lambda_{m}^{k-l-1}-\lambda_{m}^{n-k+1} \lambda_{j}^{k-l-1}\right) \\
& -\sum_{j, m} \varphi_{1 j} \varphi_{2 j}\left(\varphi_{1 m} \varphi_{2 m x}+\varphi_{1 m x} \varphi_{2 m}\right) \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} h_{l} \lambda_{j}^{n-k} \lambda_{m}^{k-l-1} \\
& +\sum_{j, m} \varphi_{2 j} \varphi_{2 j x} \varphi_{1 m}^{2} \sum_{k=1}^{n} \sum_{l=0}^{k-1} h_{l} \lambda_{j}^{n-k} \lambda_{m}^{k-l-1} \\
& +2 \sum_{j, m} \varphi_{2 m}^{2} \varphi_{1 j}^{2} \sum_{k=0}^{n-1} \lambda_{j}^{n-k} h_{k}-2 \sum_{j, m} \varphi_{1 j}^{2} \varphi_{2 m}^{2} \sum_{k=0}^{n-1} \lambda_{m}^{n-k} h_{k}+\tilde{G}_{3} \\
= & \sum_{j, m}\left(\varphi_{2 j}^{2} \varphi_{1 m}^{2}-\varphi_{1 j}^{2} \varphi_{2 m}^{2}\right) \sum_{k=0}^{n-1} h_{k} \lambda_{m}^{n-k-1}+\tilde{G}_{3}
\end{aligned}
$$

and

$$
\left.a_{n x}\right|_{A}=\sum_{j, m}\left(\varphi_{1 j}^{2} \varphi_{2 m}^{2}-\varphi_{2 j}^{2} \varphi_{1 m}^{2}\right) \sum_{k=0}^{n-1} h_{k} \lambda_{m}^{n-k-1}+\tilde{G}_{3} .
$$

Then

$$
\begin{equation*}
\left.\left(w_{t}+a_{n x}\right)\right|_{A}=\tilde{G}_{3} . \tag{3.29}
\end{equation*}
$$

By (3.27)-(3.29), (3.16) becomes

$$
\begin{equation*}
F_{j t}=\bar{N}_{j} F_{j}-E_{j} \quad j=1, \ldots, N \tag{3.30}
\end{equation*}
$$

where

$$
E_{j}=\binom{E_{1 j}}{E_{2 j}}=\binom{\tilde{G}_{3} \varphi_{1 j}+\tilde{G}_{2} \varphi_{2 j}}{\tilde{G}_{1} \varphi_{1 j}-\tilde{G}_{3} \varphi_{2 j}} .
$$

Since $\Phi(x, 0)$ solves (3.13), we have

$$
\begin{align*}
& F(x, 0) \equiv 0 \\
& \left.\frac{\partial^{m} F}{\partial x^{m}}\right|_{1=0} \equiv 0 \quad m=0,1, \ldots \tag{3.31}
\end{align*}
$$

Like \tilde{G}_{i}, each monomial of $E_{1 j}$ and $E_{2 j}$ contains at least one component of F, F_{x}, $F_{x x}, \ldots$ either as a factor or in its integrand, thus one gets from (3.30) and (3.31) that

$$
\begin{aligned}
& \left.F_{t}\right|_{t=0} \equiv 0 \\
& \left.\frac{\partial^{m+1} F}{\partial x^{m} \partial t}\right|_{t=0} \equiv 0 \quad m=0,1, \ldots
\end{aligned}
$$

Finally, it is easy to show by induction that

$$
\left.\frac{\partial^{m+l} F}{\partial x^{m} \partial t^{i}}\right|_{t=0} \equiv 0 \quad m, l=0,1, \ldots
$$

which yields

$$
\begin{equation*}
F(x, t) \equiv 0 \tag{3.32}
\end{equation*}
$$

Then we complete the proof by using (3.15) and (3.16).
Theorem 3.2. The constants of the motion for (3.13) are given by

$$
\begin{equation*}
h_{k}=\left.\sum_{i=0}^{k} \alpha_{i} a_{k-i}\right|_{A} \quad k=1,2, \ldots \tag{3.33}
\end{equation*}
$$

with

$$
\alpha_{0}=1 \quad \alpha_{m}=-\sum_{l=0}^{m-1} \alpha_{l} \sum_{j} \lambda_{j}^{m-1-t} \varphi_{1 j} \varphi_{2 j}
$$

or
$h_{k}=\left.a_{k}\right|_{A}-\sum_{j} \varphi_{1 j} \varphi_{2 j} \sum_{m=0}^{k-1} h_{m} \lambda_{j}^{k-m-1} \quad h_{0}=1 \quad k=1,2, \ldots$.

Proof. If Φ satisfies (3.13), it is found from (3.23), by using (3.32), that

$$
\left.L^{* k} f_{0}\right|_{A}=\left.\left(\begin{array}{c}
c_{k} \tag{3.35}\\
b_{k} \\
2 a_{k}
\end{array}\right)\right|_{A}=\sum_{J} \Psi_{j} \sum_{m=0}^{k-1} h_{m} \lambda_{j}^{k-1-m}+h_{k} \Psi_{0}
$$

where the h_{m} are constants defined by

$$
\begin{array}{ll}
h_{0}=1 & h_{m}=\left.\sum_{i=0}^{m} \alpha_{i} a_{m-i}\right|_{A, x=x_{0}} \\
\alpha_{0}=1 & \alpha_{m}=-\left.\sum_{i=0}^{m-1} \alpha_{i} \sum_{j} \lambda_{j}^{m-1-1} \varphi_{1 j} \varphi_{2 j}\right|_{x=x_{0}} .
\end{array}
$$

However, (3.35) implies that the constants h_{m} only depend on $\lambda_{1} \ldots \lambda_{N}$ and Φ, and have nothing to do with x_{0}. Thus the h_{k} given by (3.33) are the constants of the motion for (3.13). Then (3.34) follows from (3.35) immediately.

Theorem 3.3. If Φ is a solution to (3.13), then p given by (3.12) satisfies a certain higher-order stationary equation

$$
\begin{equation*}
\theta L^{* N+1} f_{0}+\sum_{k=0}^{N-1} d_{k} \theta L^{* k+1} f_{0}=0 \tag{3.36}
\end{equation*}
$$

where the d_{k} are some constants determined by $\lambda_{1}, \ldots, \lambda_{N}$ and h_{1}, \ldots, h_{N}.
Proof. Setting

$$
Q(\lambda)=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{N}\right)=\lambda^{N}+\sum_{k=1}^{N} g_{k} \lambda^{N-k}
$$

then

$$
\begin{equation*}
Q\left(\lambda_{j}\right)=\lambda_{j}^{N}+\sum_{k=1}^{N} g_{k} \lambda_{j}^{N-k}=0 . \tag{3.37}
\end{equation*}
$$

Using (3.35) gives

$$
\begin{align*}
\left.\sum_{k=0}^{N} d_{k} L^{* k+1} f_{0}\right|_{A} & =\sum_{j} \Psi_{i} \sum_{k=0}^{N} d_{k} \sum_{m=0}^{k} h_{m} \lambda_{j}^{k-m}+\Psi_{0} \sum_{k=0}^{N} d_{k} h_{k+1} \\
& =\sum_{j} \Psi_{j} \sum_{k=0}^{N} \lambda_{j}^{N-k} \sum_{m=0}^{k} h_{m} d_{N-k-m}+\Psi_{0} \sum_{k=0}^{N} d_{k} h_{k+1} . \tag{3.38}
\end{align*}
$$

Taking $d_{N}=1$ and

$$
\sum_{m=0}^{k} h_{m} d_{N-k-m}=g_{k} \quad k=1, \ldots, N
$$

or

$$
d_{N-k}=g_{k}-\sum_{m=1}^{k} h_{m} d_{N-k-m} \quad k=1, \ldots, N
$$

then

$$
\sum_{k=0}^{N} d_{k} L^{* k+1} f_{0}=\Psi_{0} \sum_{k=0}^{N} d_{k} h_{k+1}
$$

which leads to (3.36) immediately.

For (1.3b), the time evolution equation of Φ which corresponds to (3.14) is [9]

$$
\Phi_{j t}=\bar{N}_{j} \Phi_{j} \quad \bar{N}_{j}=\left(\begin{array}{cc}
\bar{A}_{j} & \bar{B}_{j} \tag{3.39}\\
\bar{C}_{j} & -\bar{A}_{j}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \bar{A}_{j}=\left.\left(\sum_{k=0}^{n} a_{k} \lambda_{j}^{n-k}+l a_{n+1}\right)\right|_{A} \\
& \bar{B}_{j}=\left.\sum_{k=1}^{n} b_{k} \lambda_{j}^{n-k}\right|_{A} \quad \bar{C}_{j}=\left.\sum_{k=1}^{n} c_{k} \lambda_{j}^{n-k}\right|_{A} \\
& \left(\begin{array}{c}
c_{k} \\
b_{k} \\
2 a_{k}
\end{array}\right)=L^{* k} f_{0} \quad k=0,1, \ldots, n+1 .
\end{aligned}
$$

Then similar results are valid for ($1.3 b$).
Theorem 3.4. If $\Phi(x, t)$ solves (3.39) and $\Phi(x, 0)$ solves (3.13), then $\Phi(x, t)$ satisfies (3.13) and p given by (3.12) is a solution to (1.3b).

The proof can be done in same way as we did for theorem 3.1.
Theorem 3.5. If Φ satisfies (3.13), then p given by (3.12) is a solution of a certain higher-order stationary equation

$$
\begin{equation*}
\theta_{1} L^{* N+1} f_{0}+\sum_{k=0}^{N-1} d_{k} \theta_{1} L^{* k+1} f_{0}=0 . \tag{3.40}
\end{equation*}
$$

Proof. Using (3.37) and (3.38) and taking

$$
\begin{aligned}
& d_{N}=1 \\
& d_{N-1}=g_{k}-\sum_{m=1}^{k} h_{m} d_{N-k+m} \quad k=1, \ldots, N-1 \\
& \left(1+l h_{1}\right) d_{0}=g_{N}-\sum_{m=1}^{N} d_{m}\left(h_{m}+l h_{m+1}\right)
\end{aligned}
$$

we obtain (3.40).
Finally, for the Yang equation (1.2), we can get the following natural constraint on potential \bar{p} by constructing an invariant subspace of \tilde{L}^{*}

$$
\begin{aligned}
& q=-4\left(\sum_{j} \psi_{1 j} \psi_{2 j}\right)^{2}-\left(\sum_{j}\left(\psi_{2 j}^{2}-\psi_{1 j}^{2}\right)\right)^{2}-\sum_{j} \xi_{j}\left(\psi_{2 j}^{2}+\psi_{1 j}^{2}\right)+\sum_{j}\left(\psi_{1 j x} \psi_{2 j}-\psi_{1 j} \psi_{2 j x}\right) \\
& r=\sum_{j}\left(\psi_{2 j}^{2}-\psi_{1 j}^{2}\right) \quad s=2 \sum_{j} \psi_{1 j} \psi_{2 j} \quad \sum_{j}\left(\psi_{1 j}^{2}+\psi_{2 j}^{2}\right)=1
\end{aligned}
$$

which can also be obtained from (3.11c) and (3.12) by using the gauge transformation relating (1.1) and (1.2) given in [9].

Then similar theorems to theorems 3.1-3.3 hold for the Yang equation (1.2) and the evolution equations (1.4).

Some other algebraic geometrical properties associated with this non-hereditary operator, such as the Lie algebra structure of the symmetries, will be discussed in a forthcoming paper.

Acknowledgment

This work was supported by the National Natural Science Foundation of China.

References

[1] Gel'fand I M and Dorfman I Y 1979 Funct. Anal. Appl. 13 248; 1980 Funct. Anal. Appl. 1471
[2] Fuchssteiner B and Fokas A S 1981 Physica 4D 47
[3] Yishen Li and Guocheng Zhu 1986 J. Phys. A: Math. Gen. 193713
[4] Yi Cheng and Yishen Li 1987 J. Phys. A: Math. Gen. 201951
[5] Fokas A S 1987 Stud. Appl. Math. 7253
[6] Giachetti R and Johnson R 1984 Phys. Lett. 102A 81
[7] Yang C N 1987 Commun. Math. Phys. 112205
[8] Konopelchenko B G and Dubrovsky V G 1983 Phys. Lett. 95A 457
[9] Yishen Li 1989 Kexue Tongbao 8567
[10] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53249
[11] Fokas A S and Anderson R L 1982 J. Math. Phys. 231066
[12] Moser J Various aspects of integrable Hamiltonian systems Progress in Mathematics vol 3 (Basel: Birkhäuser) 233
[13] Yunbo Zeng and Yishen Li 1989 J. Math. Phys. 301679
[14] Deift P, Lund F and Trubowitz E 1980 Commun. Math. Phys. 74141
[15] Cao Cewen 1990 Non-linearization of the Lax system for AKNS hierarchy Preprint

