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Abstract. The recursion operator associated with the CJ equation is shown not to be 
hereditary. Restricting the potential to the invariant subspace of the recursion operator 
leads to a constraint on the potential. Under the constraint two systems obtained from the 
GJ equation and the related time evolution equation for eigenfunctions are shown to be 
naturally consistent. Constants of the motion for former system are given and a solution 
to this system satisfies a certain higher-order stationary equation. Also, similar results are 
obtained for the Yang equation. 

1. Introduction and notation 

The central role in studying an integrable equation in 1 + 1  dimensions is played by 
the hereditary recursion operator (see, for example, [ 1-51) which satisfies some alge- 
braic geometrical properties mentioned in [5]. In this paper we study some properties 
of the non-hereditary recursion operator. 

Consider the generalised AKNS eigenvalue problem 

which is proposed by Giachetti and  Johnson in [6] and is called the GJ equation for 
short, and  its gauge equivalent Yang equation [7] 

where A and  6 are eigenparameters, and U, c, w, s, q, r are sufficiently smooth functions 
of x and t .  Equation (1.1) is the special case of the spectral problem considered in 
[8]. It was pointed out in [ 8 , 9 ]  that the general form of the nonlinear evolution 
equations associated with (1.1) consists of a term expressed in recursion form by a 
recursion operator and  an  additional arbitrary term. By suitably choosing the arbitrary 
function, a n  infinite set of heirarchies of nonlinear evolution equations associated with 
(1.1) and  (1.2), for which the two terms mentioned above can be rewritten in one term 
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with another recursion operator, are given in [9], respectively, as follows: 

p ,  = eL*y0 (1.3a) 

p ,  = eIL*n+lfO 1 = 1 , 2 ,  . . . (1.3b) 

p ,  = 8l*"f0 (1.4a) 

p ,  = gJ*"+'f0 1 = 1,2,. . . (1 .46 )  

where 

d 0 D - 2 ~  
e =  D+2w 0 ) I=[': :: +i) D = -  dx (1.5) [ 0 0 - f D  

- 2  lu - D  -1s lr 

-1u lv 

the operators L* and t* are adjoint operators of L and l, respectively. L* and t* 
are given by 

- i D + w  - f u )  (1.6a) 

(1.66) 

1 ;D+  w 0 --gv 

L * = [ D - ' u $ + 2 w )  D - ' v ( D - 2 w )  0 

0 D-'(2sq - rD) D-'(-2qr - sD)  
- 4  i D  

-$ D -4  

D - I D  = DD- = 1. 

It is known [ 6 , 8 ]  that (1.1) can be converted to the canonical ZS-AKNS spectral 
problem by the gauge transformation 4 = ue-2D-1w,  = ve2D-'w , which transforms the 
triple of functions ( U ,  U, w )  to the pair (4 ,  r )  in the ZS-AKNS case. It is clear that this 
gauge transformation admits the uncertainty of the general nonlinear evolution 
equations for ( U ,  U, w )  when starting from the evolution equations for (4 ,  r ) .  Thus, 
after specifying the uncertainty, it is significant to study the specific equations (1.3) 
and (1.4) in themselves. Indeed, we find that the recursion operator L for (1.3) possesses 
some properties which are quite different from those for the hereditary recursion 
operator associated with the AKNS hierarchy [ 101. The main reason for this difference 
is that L is not hereditary. By using the results given in [ 2 ,  111, we shall show that L 
is not hereditary. 

It is significant to consider a constraint on the potential of an eigenvalue problem 
and associated integrable nonlinear evolution equations (see, for example, [ 12,141 
and the references within [ 131). If no boundary condition for the potential is required, 
we proposed in [ 131 a straightforward way of obtaining the constraint on the potential 
by restricting a hierarchy of integrable evolution equations to the invariant subspace 
of their recursion operator. Under this constraint condition, two systems obtained 
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from the Lax pair can be shown to be naturally consistent. Usually, the invariant 
subspace of a hereditary recursion operator consists of the eigenvectors of the recursion 
operator. However, in section 3, for the non-hereditary recursion operator L, we have 
to restrict p to a subspace spanned by eigenvectors of L* and one more vector 
q0 = (0, 0, 2)T in order to obtain an invariant subspace of L* and a constraint on p .  
Under this constraint on p ,  two systems obtained from the GJ equation (1.1) and time 
evolution equation of cp related to (1.3) are shown to be naturally consistent. Also, 
the constants of the motion for the former system are given and the solution of this 
system satisfies a certain higher-order stationary equation of ( 1  -3). Using the gauge 
transformation, it is easy to obtain the constraint on q and r in the AKNS case from 
one on U, U and w. However, it seems that this gauge transformation does not provide 
a direct way of obtaining the specific constraint on U, v and w from one on q and r. 
Similar results for the Yang equation are also obtained. 

2. Non-hereditary property of L and i 

It was shown in [ 9 ]  that (1.3b) can be written as a Hamiltonian systems with Or as the 
associated symplectic operator, namely p ,  = OIL*"+'fO= e181n,,/Sp. But it is easy to 
verify that OIL* # LO,. This means [ 111 that L is not hereditary. (Otherwise, it would 
be valid that OIL* = LO,.) This conclusion is consistent with the fact that for (1.3a), 
L*"fO = SI , , /Sp ,  OL* = LO, but O is not a symplectic operator. 

Also, we can show that L is not hereditary by using other property of hereditary. 
From ( 1 . 6 ~ )  we have 

- f D + w  0 (D-2w)uD-I  

0 

Taking 

K g  = ('ill) 

it is easy to check that 
0 0 ( D - ~ w ) ( ~ u ) D - '  

L' [ko]= 0 0 ( D + ~ w ) ( - ~ u ) D - '  
U -U 0 

0 2 (  D +2w)uD-' 
- D  - 2 ~  -2 (  D + ~ w ) u D - '  

i 
0 0 
0 

kl,L = 

U 

Thus we have 

L'[ ko] = kl,L - Lkl, 
which means that L is a strong symmetry for ko (see [ 2 ] ) .  
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Setting 

then a straightforward calculation gives 

0 ( D  - 2 w ) ( - U ,  + 2 u w ) D - '  
0 ( D +  2 w ) ( - u ,  - 2uw)D-I 

0 

- U 2  - ( D - 2 w ) 2 u D - '  
- f ( D + 2 w ) 2 +  uu - ( D + 2 W ) % D - '  

0 0 

0 (-iD+ w ) ( 2 u )  
- f ( D + 2 ~ ) '  (fD+ w ) ( - ~ u )  

k i L =  

+( - D + 2 w )' 

-;U(-D + 2 w )  t u (  D + 2 w )  0 
Lki = 

It follows from the above formulae that 

L'[ k , ]  - ki L +  Lki # 0 

which means that L is not a strong symmetry for k , .  Since L is a strong symmetry for 
k,, if L is hereditary, it would follow that L is a strong symmetry for k ,  = Lk,. So L 
is not hereditary [ 2 ] .  

The spectral problem ( 1 . 2 )  can be converted to (1.1) by a gauge transformation 
given in [9]. It is shown in [9] that 

T = [ i  -: 0 -i 

can never be hereditary [ 2 ] .  

L= TLT-' 

which means that 

eigenvalue equations: 
Finally, we want to point out that L* and E* satisfy the following isospectal 

L*G,  = AG, (2.1) 

E* G, = [ G ,  ( 2 . 2 )  

where GA and G, denote the gradients of A and [, respectively. Assume that U, v, w, 
q, r, s belong to Schwartz space. Using the following formula [15]  that if 

then 
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where the dot denotes the Frechet derivative, it is easy to find the gradients G, and 
G, from (1 . I )  and (1.2), respectively. We have 

From (l.l),  one gets 

( c p f ) x  = 2 ( - A  + ~ ) c p : + 2 ~ c p l c p 2  

( c p I c p 2 ) r  = W t +  ucpf 

( c p 3 r  =2ucpo,cp,-2(-A + w)cp: 

which can be rewritten as 

A c p f = f ( c p : ) , +  wcp:- ucplcpz (2.3) 

- A p 2 - - i (  1 - 2  cpl)l--wcpo--cplcp, ’ (2.4) 

2Acp1cp2 = D-’(2Aucp~+2Aucp~) 

= D-I( 
= D-’[ u ( D S 2 w ) c p :  - u(D -2W)cp;l. 

- 2uu(Po,cp*+ wucpc: - U( cp;)x + 2wucp:+2uucplcpJ 
( 2 . 5 )  

Equations (2.3), (2.4) and (2.5) admit the equation (2.1). Similarly, (2.2) can be 
deduced from (1.2). 

Remark. We have just shown that L is not a strong symmetry for p f  = k , ,  which is the 
first equation in the hierarchy ( 1 . 3 ~ ) .  Thus the formula (2.1) does not contradict the 
conclusion that L is not hereditary (see [ 111). 

3. The natural constraint on p and p 

Besides (l.l), if cp satisfies 

where 
n - l  n n 

A =  1 akAn-k B = 2 b k A n - k  C = 
k = O  k = l  k = l  

( E: 1 = L*kfo k = 0 , .  . . , n 
2 ak 

then the solvability condition of (1.1) and (3.1) is 

cp,,-cpt,=M,-N,+MN-NM=O. 

Using (3.2) and (3 .3) ,  we have [9] 

(3.2) 

(3 .3 )  

(3.4) 

) (3 .5)  
wt + a n x  ~,-(bn,-2Wbn) 

U, - (cn,  + 2wcn) - w, - anx 
M I  - N , +  M N  - NM = 
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which, together with (3.4), gives ( 1 . 3 ~ ~ ) .  Here ( 1 . 3 ~ ~ )  is deduced from (1.1) and (3.1) 
without requiring any boundary condition for p ,  and we define the integral constant 
of D-' appearing in L* to be zero. Using Io  = j:, dy instead of D-I, we define 

Yishen Li and Yunbo Zeng 

0 -$U 

- i D + w  --;U) 

I O U ( D + ~ W )  I O V ( D - 2 ~ )  0 

where xo is a fixed arbitrary constant. It is easy to see from (2.1) that if cp satisfies 
( l . l) ,  then 

L,,V = AV + e V o  (3.6) 

where 

V = ( -'; ) To= (!) e = - A ( P ~ ( P ~ ~ ~ = ~ ~ .  

2 Q i V z  

We now consider following system instead of (1.1): 

(3.7) 

where Ak f A, ,  when k # I. We define 

If @ solves (3.7), one gets from (3.6) 

LoVJ = AJVj + eJVo (3.8) 

where 

e .  = - A .  
J J'P l j ( P 2 j  1 1  = x o *  

Note that 

(3.9) 

( 3 . 1 0 ~ ~ )  

We can get an invariant subspace H of Lo spanned by {'U,, . . . , Vw, 'Uo} by demanding 

Without loss of generality, we take aj = 1, i.e. 
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which is equivalent to 

U =c d, 
J 

(3.10b) 

( 3 . 1 1 ~ )  

(3.11b) 

(91J(o2J = -' (3 .11~)  

for brevity throughout the paper. Under the constraint 
J 

where we use Z, instead of 
condition ( 3 . 1 1 ~ )  and (3.11b), it follows from (3.7) that 

which is consistent with (3 .11~) .  Finally we have from (3.7) that 

(3.12) 

(3.13) 
Imposing the constraint condition (3.1 I C )  and (3.12), (3.7) and (3.1) become 

Q J X  = MJQJ M J = M J / A  j = 1 ,  . . . ,  N 
a], = N; = N l A = A , , A  j = l ,  . . . ,  N (3.14) 

where subscript A means to substitute (3 .11~)  and (3.12) into the expression. We will 
show that (3.13) and (3.14) are naturally consistent, namely that the set of the solutions 
to (3.13) is left invariant under the flow (3.14). Indeed, the fact that the constraint on 
p (3.12) ensures that H be an invariant subspace of Lo allows us to show the consistency 
of (3.13) and (3.14). 

- x J  V : J  

' J  P;J (;)=m=( -'J A ~ ~ l J ( P Z ~  -'J p 1 J X V 2 , ' ' J  PI] 2 ' k  Q $ k  

Let @ satisfy (3.14); set 

Following the procedure proposed in [13, 
F ( x ,  t )  = 0.  

Lemma. F defined by (3.15) satisfies 

Theorem 3.1. Suppose that @(x, t )  solves (3.14) and @(x, 0) solves (3.13), then @(x, t )  
satisfies (3.13), and (3.12) is a solution to ( 1 . 3 ~ ) .  
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Pro05 Using (3 .15) ,  a straightforward calculation gives 

j = l ,  . . . ,  N Lo*] = A J q J  + e J q o +  GI 

where 

( 3 . 1 7 ~ )  

From (3.17) and (3 .10) ,  it can be derived by induction that 

L o f 1 l A  = C (A] + I)*, + azq0+ G"' 
I 

k 

L,"fllA = 2 qJ 2 amA:-"'+ ak+Iqo+ G'kl 
J m=O 

where 
m - l  

c y o =  1 a m  = c 4 m - I - f  
f = O  

(3.18) 

(3.19) 

(3 .20)  

(3.21) 

k - l  

G" '=C GJIA G'k '  = GI C Y , A , ~ - ' - ~  + L0G"-"lA. 
I J m=O 

It is easy to observe that each monomial of each component of G'" contains either 
one component of F, Fy, F,,, . . . as a factor or an integration like I o . .  . Iog, the integrand 
of which, g ( x ) ,  has one component of F, F x , .  . . a s  a factor. In what follows, for 
simplicity, we denote all these kinds of function vector by the one symbol G =  
(e1, e2, without regard for their differences. 

Using the following identity repeatedly: 

we get from (3 .3)  and (3.19) 

where 

(3.22) 

4 

(3 .24)  
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Using the identity 
n k - 1  C C h l (A : - kA f - ' - l  - A ; - ~ A : - / - ~ ) = O  

k = l  / = o  

one gets from (3.121, (3 .14 )  and (3 .23 )  that 

V t l A  = -2 (PZm(P2mf lA  
m 

7 2 9  

(3 .25 )  

By using (3 .15 )  and (3.231, it is found that 

which, together with (3 .26 ) ,  leads to 

In similar manner, we have 

Note that 

[of - (cnx + 2 )]1A = 61 . 

[ - ( bnx - 2  wbn ) ] / A  = 6 2  * 

We find from (3.121, (3 .14 ) ,  (3.151, (3 .23)  and (3 .25)  that 
n k - 1  

w t l A  = C (o:j(Plm(clmx C hlA;-kAk,-'-' 
J. m k = l  / = 0  

(3 .27)  

(3 .28)  
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Since @ ( x ,  0) solves (3.13), we have 

F ( x ,  0) E 0 

m = 0, 1, . . . . 

(3.29) 

(3.30) 

(3.31) 

Like Gi, each monomial of E,,  and E, contains at least one component of F, F,, 
F,,, . . . either as a factor or in its integrand, thus one gets from (3.30) and (3.31) that 

F , ( , = o ~  0 

: X l r = o = O  m = 0 , 1 ,  . . . .  

Finally, it is easy to show by induction that 

which yields 

F ( x ,  t )  = 0.  

Then we complete the proof by using (3.15) and (3.16). 

Theorem 3.2. The constants of the motion for (3.13) are given by 

h k  = a i a k - , l A  k = 1,2, . . . 
k 

i = O  

with 

or 

(3.32) 

U 

(3.33) 

(3.34) 
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ProoJ: If 0 satisfies (3.13),  it is found from (3.23),  by using (3.32),  that 

(3.35) 

where the h, are constants defined by 
... 

However, (3 .35)  implies that the constants h, only depend on A I  . . . A N  and @, and 
have nothing to do with xo. Thus the hk given by (3.33) are the constants of the motion 

0 

Theorem 3.3. If @ is a solution to (3 .13) ,  then p given by (3.12) satisfies a certain 
higher-order stationary equation 

for (3,13).  Then (3.34) follows from (3.35) immediately. 

N - l  
6L*N+'fO-k 1 dk6L*k+1f0=0 (3.36) 

k=O 

where the dk are some constants determined by A I , .  . . , A N  and h , ,  . . . , h N .  

Proof: Setting 
N 

O ( A ) = ( A - A , )  . . . (  A - A N ) = A N +  2 g J N - k  
k = l  

then 
N 

(3.37) 

Using (3.35) gives 

J 

Taking d N  = 1 and 

hmdN-A-m =gk 
m = O  

or 

then 

m = O  

k = l ,  

k = l ,  

k = O  

, N  

, N  

which leads to (3.36) immediately. 
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For (1.36), the time evolution equation of @ which corresponds to (3.14) is [9] 

where 

(3.39) 

Then similar results are valid for (1.3b). 

Theorem 3.4. If @(x, t )  solves (3.39) and @(x, 0) solves (3.13), then @(x, t )  satisfies 
(3.13) and p given by (3.12) is a solution to (1.3b). 

The proof can be done in same way as we did for theorem 3 .1 .  

Theorem 3.5. If @ satisfies (3.13), then p given by (3.12) is a solution of a certain 
higher-order stationary equation 

Proof: Using (3.37) and (3.38) and taking 

dN = 1 

we obtain (3.40). 

(3.40) 

0 

Finally, for the Yang equation (1.2), we can get the following natural constraint 
on potential p by constructing an invariant subspace of L* 

r = c ( $ t , - $ : , )  s = 2 c J/I,$2/ ( $ : J + $ : J ) =  

J I J 

which can also be obtained from (3.1 IC) and (3.12) by using the gauge transformation 
relating (1.1) and (1.2) given in [9]. 

Then similar theorems to theorems 3.1-3.3 hold for the Yang equation (1.2) and 
the evolution equations (1.4). 
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Some other algebraic geometrical properties associated with this non-hereditary 
operator, such as the Lie algebra structure of the symmetries, will be discussed in a 
forthcoming paper. 
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